
SENSEI: Cross-Platform View of
In Situ Analytics

E. Wes Bethel, Junmin Gu, Burlen Loring, Dmitriy Morozov, Gunther H. Weber,
John Wu (LBNL). Nicola Ferrier, Joseph Insley, Silvio Rizzi, Sergei Shudler (ANL).

Dave Pugmire, James Kress, Matthew Wolf (ORNL). Earl Duque, Brad Whitlock
(Intelligent Light). Utkarsh Ayachit, David Thompson, Andrew Bauer, Patrick

O’Leary (Kitware)

Acknowledgment

This work is supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy, Office of Advanced Scientific
Computing Research, under Contract No. DE-AC02-05CH11231, through the grant
“Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale
Knowledge Discovery,” program managers Dr. Lucy Nowell and Dr. Laura Biven.

SENSEI: Scalable Analysis Methods
and In Situ Infrastructure for Extreme
Scale Knowledge Discovery

• Today we will cover a subset of a half day tutorial presented at SC18 by the
SENSEI team

• Download SC18 slides and virtual machine image:
https://sensei-insitu.org/tutorials/sc18.html

https://sensei-insitu.org/tutorials/sc18.html

Relevant links

• Main page – http://www.sensei-insitu.org/
• Software repository – https://gitlab.kitware.com/sensei/sensei

• ADIOS – https://www.olcf.ornl.gov/center-projects/adios/

• VisIt/Libsim – https://www.visitusers.org/index.php?title=Category:Libsim

• ParaView Catalyst – http://www.paraview.org/in-situ/
• SENSEI in situ tutorial at CSCS

https://www.youtube.com/watch?v=nA22JqzhjqQ&list=PL1tk5lGm7zvRSS-
M2bvW3JCt93gpgGHjM

http://www.sensei-insitu.org/
https://gitlab.kitware.com/sensei/sensei
https://www.olcf.ornl.gov/center-projects/adios/
https://www.visitusers.org/index.php?title=Category:Libsim
http://www.paraview.org/in-situ/
https://www.youtube.com/watch?v=nA22JqzhjqQ&list=PL1tk5lGm7zvRSS-M2bvW3JCt93gpgGHjM

Welcome! Why are we here?

Problem: FLOPS >> I/O, potential for
lost science

Approach: do as much processing as
possible while data still resident in
memory?

Why This Tutorial? To inform you of
issues involved, to show you what
technologies are available and how to
use them.

Five orders of magnitude between compute and I/O
capacity on Titan Cray system at ORNL

Computation
125 PB/s

Node memory
4.5 PB/s

Node memory
4.5 PB/s

Interconnect
24 TB/s

Storage
1.4 TB/s

Interconnect
24 TB/s

O(2)

O(2)

O(1)

Image courtesy Ken Moreland

What is in situ data analysis and visualization?

• Post processing: save to disk, then later, a separate analysis/vis
program reads that data and operates on it.

• In situ processing: process data as it produced without writing to
and reading from storage. Processed “in place”.
– Many flavors/terms: tightly coupled, loosely coupled, in transit, co-processing, etc.
– Practical view: anything processed but not written to persistent storage is in situ

Generic processing sequence

1. initialize sim
2. do
3. compute new state
4. if do_io write plot file
5. while !done
6. finalize sim

Generic processing sequence w/ in situ

1. initialize sim
2. if do_insitu initialize in situ
3. do
4. compute new state
5. if do_io write plot file
6. if do_insitu execute in situ
7. while !done
8. if do_insitu finalize insitu
9. finalize sim

execute is where things get
interesting

• shared address space zero
copy data transfers to shared
or unique compute resources

• staging transfer sends data to
a de-coupled parallel job,
potentially asynchronous,
potentially different jobs size

In situ vs In transit

Simulation Cores
In Situ/In Transit Cores

In situ – no data
movement:

Simulation and in
situ methods

share memory

In transit – data
is moved:
Simulation and
in situ methods
do not share
memory

What is the cost of in situ processing?

Concern: simulations want to use all available resources, so having an
understanding of in situ resource utilization is useful.

In other words: In situ infrastructure must play nicely with simulation

Full details in SC16 paper:
Ayachit, Bauer, Duque, Eisenhauer, Ferrier, Gu, Jansen, Loring, Lukic, Menon,
Morozov, O’Leary, Ranjan, Rasquin, Stone, Vishwanath, Weber, Whitlock,
Wolf, Wu, and Bethel, “Performance Analysis, Design Considerations, and
Applications of Extreme-scale In Situ Infrastructures”. In Proceedings of SC16,
November 2016.

SENSEI System Overview

In situ infrastructures
Relatively new. Until recently, ad hoc, proof-of-concept prototypes. However, several production

quality in situ infrastructures have emerged

ADIOS provides tools for in situ I/O , data movement and analysis
• ADIOS allows simulations to adopt in situ techniques by leveraging their advanced I/O

infrastructures that enable co-analysis pipelines rather than changing the simulator.
• The non-intrusive integration provides resilience to third party library bugs and possible jitter in the

simulation.

ParaView and VisIt both provide tools for in situ analysis and visualization
• Can be tightly or loosely linked to a simulation, allowing the simulation to share data with Catalyst

for analysis and visualization.

• Catalyst, Libsim, and ADIOS enable the opposite flow of information, sending data from the
client to the simulation, enabling the possibility of in situ and/or monitoring/simulation steering.

Ascent an emerging in situ framework with an elegant data model, taking advantage of emerging
VTK-m many core analysis and rendering capabilities

Can WE….

Enable use of any in situ framework?

Enable use of any analysis library/tool, even those not designed for in situ?

Develop analysis routines that are portable between codes?

Make it easy to use?

The current problem set

SENSEI seamlessly & efficiently enables in situ data processing with a
diverse set of tools & libraries

Our approach

Data model
• The lingua franca allowing an analyses to access

simulation data consistently across a variety of
simulations

Data adaptor
• Convert simulation data to/from the data model
• API for accessing the simulation data from the backend
Analysis adaptor
• Present the back-end data consumer to the simulation
• API for pushing data through the system from the sim
Library
• Providing off the shelf access to a diverse set of back-

ends. eg Libsim, Catalyst, and ADIOS capabilities

Write once run everywhere

The SENSEI API enables connection of simulation data sources to
visualization and analysis back ends

• From the perspective of the simulation, the back ends(analysis/vis codes)
are interchangeable

The SENSEI data model enables viz & analysis codes to access data through
a unified API.

• From the perspective of the analysis/visualization code, data
sources(simulations) are interchangeable

SENSEI Architecture

bridge code

Configurable
analysis
adaptor

Lisbim
adaptor

ADIOS
adaptor

Python
adaptor

Simulation
Sim’s data

adaptor

XML selects one of
these at runtime

Catalyst
adaptor

Yt adaptor

VTK-m
adaptor

SENSEI’s data adaptor
API and data model

expose simulation data
structures to the analysis

back-end

Ascent
adaptor

C++ Prog.
adaptor

“write once, run everywhere”
A simulation can use any back-

end through a single API & swap
the back-ends at runtime

SENSEI’s analysis
adaptors provide the
API for simulations to
drive analysis and vis

Bridge/instrumentation code
is added to call SENSEI

Analysis. Typically: Initialize,
Execute, Finalize

1. initialize sim
2. if do_insitu bridge::initialize
3. do
4. compute new state
5. if do_io write plot file
6. if do_insitu bridge::execute
7. while !done
8. if do_insitu bridge::finalize
9. finalize sim

SENSEI API’s

bridge

data
adaptor

analysis
adaptor

simulation analysis

Bridge API

• Is part of the simulation code
• Is where you create, initialize, and manage your data and analysis adaptors
• Is where you execute the analyses adaptors as needed
• Typically consists of 3 functions: Initialize, Compute and Finalize

Implementing the bridge to SENSEI

Typically 3 calls:

• Initialize()
– Set the DataAdaptor
– Initialize DataTimeStep
– Specify what analysis will be done. For

the Oscillator we use the
ConfigurableAnalysis class.

• Compute()
– For the Oscillator we do this with two

calls: set_data() / set_particles() and
analyze(), so that SENSEI may be
disabled in benchmarks

• Finalize()

bridge

simulation

initialize

compute

finalize

Simulation loop with bridge code

1. initialize sim
2. if do_insitu bridge::initialize
3. do
4. compute new state
5. if do_io write plot file
6. if do_insitu bridge::execute
7. while !done
8. if do_insitu bridge::finalize
9. finalize sim

Run time configuration

Adaptors
• SENSEI Configurable analysis. Parses XML and creates and configures one of the other analysis

adaptors interfacing to the back-ends (Libsim, Catalyst, ADIOS, custom, etc).

• Direct integration

Back-ends
• May expose control API via their SENSEI adaptor. In the Configurable analysis adaptor these are

exposed via XML attributes.

• May be scriptable via their own Python bindings adding another layer of control.

• May be configured via "state" or "session" files.

• Special purpose

ConfigurableAnalysisAdaptor

• A meta analysis. A manager. It configures and invokes one or more of the
other analysis adaptors

• XML specifies analyses and their run time options
• Supports ADIOS, Catalyst, Libsim, VTK I/O, and other data consumers

• In in transit use cases one XML configures the transport a second configures
the analysis/backend

ConfigurableAnalysis XML

<sensei>
<!-- Custom Analyses -->
<analysis type="histogram" mesh="bodies" array="v" association="point"
bins="10" enabled="0" />

<!-- VTK XMLP I/O -->
<analysis type="PosthocIO" mode="paraview" output_dir="./" enabled="0">
<mesh name="bodies">

<point_arrays> ids, m, v, f </point_arrays>
</mesh>

</analysis>

<!-- CATALYST -->
<analysis type="catalyst" pipeline="pythonscript"
filename="../sensei/miniapps/newton/newton_catalyst.py" enabled="1" />

<!-- LIBSIM -->
<analysis type="libsim" plots="Pseudocolor" plotvars="ids"
image-filename="newton_%ts" image-width="800" image-height="800"
slice-project="1" image-format="png" enabled="0"/>

</sensei>

Generating an in situ pipeline in ParaView

• Load a
representative
dataset in
ParaView

• Define your
visualization
pipeline

• Export
Catalyst
Python script

Instructions for ParaView
v5.5.2

Catalyst example

• Configure XML file
• Run instrumented

simulation
• Result: one .png image

per simulation timestep

Demos

Oscillator miniapp overview

• MPI based C++ code that simulates a
collection of periodic, damped, or decaying
oscillators over a Cartesian grid.

• Unstructured grid also supported
• Each oscillator is convolved with a Gaussian of a prescribed

width

• Can randomly place particles and advect them using an
analytical velocity field

• Executable inputs are oscillator parameters, time resolution,
length of the simulation, grid dimensions, grid partitioning,
and number of random particles to generate

Demo 1: create slices with Catalyst in situ

Demo 2: python script in Catalyst in situ

Demo 3: unstructured mesh with Libsim in situ

Demo 4: exploring Libsim extracts with Visit in situ

More demos in the SC18 tutorial

rendered with libsim

rendered with catalyst

• ADIOS in transit demo

• Python mini app instrumented with SENSEI

• Catalyst, VTK-m, Haar wavelet, and Cinema databases

Instrumenting LAMMPS with SENSEI

LAMMPS

• Large-scale Atomic/Molecular Massively
Parallel Simulator

• Classical molecular dynamics code
• Runs on single processors or in parallel using

message-passing techniques and a spatial-
decomposition of the simulation domain

• Accelerated performance on CPUs, GPUs,
and Intel Xeon Phis

• Distributed by Sandia National Laboratories

Figure 2: Bilinear interpolation. Red circles represent mea-
sured execution times. x-variable represents problem size. y-
variable represents the process count and network diameter in
case of computation and communication time interpolations re-
spectively.

the communication performance. We observed less than 8% predic-
tion error in communication time estimates. With regards to mem-
ory, the implementation of some analysis routines require a fixed
amount of memory independent of the problem size. Other analy-
sis routines allocate memory proportional to the problem size. We
use bilinear interpolation to determine the memory requirement us-
ing the problem size as the x-variable and the process count as the
y-variable. In absence of precise analytical model due to lack of
complete knowledge of the application, linear interpolation gives a
fairly accurate estimate as shown here by the low prediction errors,
and in earlier work [27]. Note that we can refine the performance
model and leverage the various performance counters and/or mod-
els present in different systems.

5. EXPERIMENTS AND RESULTS
We describe the experimental setup, the applications and the in-

situ analyses used in the evaluation, and present the efficacy of our
in-situ analyses scheduling in several typical usage scenarios.

5.1 Setup
We conduct our experiments on the IBM Blue Gene/Q Mira sys-

tem at Argonne National Laboratory. Mira is a 48-rack machine
with Power BQC 1.6 GHz processor cores. Each rack has 2 mid-
planes consisting of 512 compute nodes each. Each compute node
has 16 GB RAM. Mira has peak I/O bandwidth of 240 GB/s to the
GPFS file system.

5.2 Application Case Studies
We evaluate our optimization-based scheduling of in-situ anal-

yses using two applications. First, we performed our experiments
using the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) classical molecular simulation code [23,33]. Two
LAMMPS problems were examined in order to best span a large
range of conditions explored in molecular simulations of liquids,
materials, and biological systems. The first problem investigated
is a box of water molecules solvating two types of ions. For this
problem, the number of atoms in the system was varied from 16
million to 400 million atoms. Table 2 lists the analyses investigated
for this problem. The set comprises of radial distribution functions
(RDF), the mean square displacements (MSD) of molecules/ions,
and velocity auto-correlation functions. Combined, these physical
observables provide key information on understanding the struc-
ture and dynamics of liquids and materials [5]. Additionally, their
respective algorithms (e.g. accumulating histograms, computing
time averages, evaluating correlation functions) are representative
of those employed in the calculation of a large class of physical
observables (e.g. dielectric constant and shear viscosity).

Table 2: Analyses for simulation of water and ions in LAMMPS
Analysis
Name

Analysis Description

hydronium
rdf (A1)

Compute hydronium-water,
hydronium-hydronium, and hydronium-ion RDFs
averaged over all molecules

ion rdf (A2) Compute ion-water and ion-ion RDFs averaged
over all molecules

vacf (A3) Compute velocity auto-correlation function for
the water-oxygen, hydronium-oxygen, and ion
atoms

msd (A4) Compute mean squared displacements averaged
over all hydronium and ions

The second LAMMPS problem explored in this work is the rhodopsin
protein benchmark, which consists of a protein embedded in a mem-
brane and solvated with water and ions [34]. For this problem, we
varied the number of atoms in the system from 16 million to 1 bil-
lion atoms. The set of analyses investigated for this problem are the
radius of gyration for a single protein and 2D histogram of density
profiles for the membrane and protein structures (listed in Table 3).
These properties provide insight into the distribution of particles
within an assembled structure and throughout the system. Just as
for the water+ions system, these analyses are commonly employed
in studies of aggregate structures and assemblies and are of interest
to a large community of researchers [5]. Figure 3 shows a snapshot

Figure 3: Snapshot of the LAMMPS rhodopsin benchmark
(32,000 atoms): protein (solid purple; center) is embedded in
membrane (translucent green; middle) and solvated with water
(translucent blue; top and bottom) and ions (orange spheres).

of the base LAMMPS rhodopsin benchmark (32,000 atoms) using
VMD [1]. The solid purple structure in the center is the protein. It
is embedded in membrane which is shown in translucent green in
the middle and solvated with water (shown in translucent blue at
the top and bottom) and ions (shown as orange spheres).

The second application used in our evaluation is the FLASH
multiphysics multiscale simulation code [13]. FLASH is an adap-
tive mesh, parallel hydrodynamics code developed to simulate high
energy density physics and astrophysical thermonuclear flashes in
two or three dimensions, such as Type Ia supernovae, Type I X-
ray bursts, and classical novae. It solves the compressible Euler
equations on a block-structured adaptive mesh. FLASH provides
an Adaptive Mesh Refinement (AMR) grid using a modified ver-
sion of the PARAMESH package [26] and a Uniform Grid (UG) to
store Eulerian data. For this study, we used the Sedov simulation

LAMMPS rhodopsin benchmark
(32,000 atoms).
Courtesy Malakar et al. "Optimal
scheduling of in situ analysis for
large-scale scientific simulations."
SC 2015.http://lammps.sandia.gov/

http://lammps.sandia.gov/

OSPRay
Viewer

libIS-clientlibIS-sim

LAMMPS Input File

liblammps

LAMMPS
Driver

Bridge

A
na

ly
si

s
 A

da
pt

orD
ata

A
daptor

LAMMPS instrumentation with SENSEI

LAMMPS as a
library

In transit. Two
concurrent jobs

Viewer decoupled
from renderer

Materials Science with LAMMPS

• Massively-parallel classical molecular
dynamics (MD) simulations with LAMMPS

• Various temperature conditions

• Varying rates of silicene deposition

• Characterize material structure and growth

Simulations were run on Mira at Argonne
162,000 iridium atoms

~6 Million total compute hours

Silicene: Mono-layer Silicon / Iridium Substrate

Nanoscale
rsc.li/nanoscale

ISSN 2040-3372

 PAPER
 Mathew J. Cherukara, Subramanian K. R. S. Sankaranarayanan et al.
 Silicene growth through island migration and coalescence

Volume 9 Number 29 7 August 2017 Pages 10147–10512

Cherukara, Mathew J., Badri Narayanan, Henry Chan, and Subramanian Sankaranarayanan.
"Silicene growth through island migration and coalescence." Nanoscale 9, no. 29 (2017)

Slide courtesy Joe Insley,
Argonne National Laboratory

45

QUESTIONS ?

sshudler@anl.gov srizzi@anl.gov

https://sensei-insitu.org/

mailto:sshudler@anl.gov
mailto:srizzi@anl.gov
https://sensei-insitu.org/

